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1. INTRODUCTION

Recently, R. F. King and D. L. Phillips [4] and P. H. Sterbenz and
C. T. Fike [7] have found (independently) that the best starting approximation
for the Newton-Raphson calculation of VX, [5], and the best logarithmic
approximation to VX are the same.

In establishing this result, they have shown that the starting approximation
suggested by W. J. Cody [1] for calculating double precision square roots
on the CDC-3600 is the best possible choice. Also, the problem of calculating
these best starting approximations is now reduced to a standard Remes
algorithm, at worst. In our discussion of this problem we shall follow the
write-up of the second paper.

In this particular paper [7], Sterbenz and Fike discussed three opti­
mality criteria that have been used for starting approximations for the
calculation of square-roots by Newton's method. Using a polynomial or
rational approximation Yo(x) = y(x) to vx, valid in [a, b] (0 < a < b), we
let Y1 ,... , Yn be defined by

Yk+l = !(Yk + X/Yk), k = 0, 1,... , n - 1;

Yn is the final approximation to vx. The three approaches studied in [7] are:

(i) Find the unique y which minimizes

I
y(x) - vx Imax ,

xE[a,b] vx
as Y ranges over the class of polynomials of degree less than or equal to some
m > 0, or over a usual class ofrational approximants. Then set Yo(x) = y(x).
(See [2] and [3].)
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(ii) Find that y*(x) = Yo(x) which minimizes

I
Yn(x) - vi Imax .

xE[a,b] vx
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This approach was studied in [5] and it was shown that there exists a unique
solution to this problem and it is the same as the solution to the problem:
find Yo(x) minimizing

I
Yl(X) - vx Imax

xE[a,b] Vx (i.e., case when n = 1).

(iii) The third approach is to minimize

max lIn y(~ I,
xE[a,b] VX

and take the minimizing function as Yo' This approach has been used by
various authors (see for example [1]) and has the advantage that analytical
methods may be applied to optimize this expression.

In [7], Sterbenz and Fike showed that the (unique) solutions to (ii) and (iii)
are the same and that this solution is a multiple of the solution to (i). In this
paper we shall show that a somewhat similar situation prevails for a much
wider class of problems.

Actually, this second result of [7] holds in general. That is, for any
f E qa, b], f> 0 and any Haar subspace (or a usual class of rational
approximants) W, it is easily seen that the best relative approximation y to I
from W, satisfying

max If(x) - y(x) I= inf max If(x) - y(x) I= '\,
xE[a,b] f(x) yEW xE[a,b] I(x)

is such that

max lIn fJy(x) I= inf max lIn y(x) I
xE[a,b] f(x) yEW YE[a,b] f(x)

where fJ = (l - ,\2)-1/2. Thus, the best logarithmic approximation to f is
always equal to (1 - ,\2)-1/2 times the best relative approximation to f
This can easily be seen from the fact that if YEW, Y > 0 on [a, b] then
E1(x) = f(x) - y(x)/f(x) attains its maximum (minimum) in [a, b] at
precisely those points where Elx) = In(y(x)f{(x) attains its maximum
(minimum),

In [6], the problem of finding optimal starting functions for calculating
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X"', ex E (0, 1), on [a, b], 0 < a < b, was studied. In that paper it was shown
that there exists a unique y*(x) that minimizes

Iy..(x) - x'" I
ep(y) = xIJt~] x'" '

where y..(x) is defined by (fJ = l/ex)

(1)

( )
_ (fJ- I)Y~_l(x) + X

Yk X - fJy:~t(x) ,

Yo(x) = y(x).

k = 1,2,... , n,
(2)

It was further shown that the same y* minimizes (1) for all n ~ 1 and that
this solution is uniquely determined by a finite set of points

for which

and

i = 1,... , m + 2,

(3)

where the number, m + 1, of alternations is the same as in the standard
uniform approximation problem with the same class of approximants.

We shall show that y*, the solution to (1), is a positive multiple of y, the
unique function minimizing

I
y(x) - x'" Imax .

xe[a,b] X'"
(4)

Also, we shall show that y* is a positive multiple of y the unique function
which minimizes

max lIn y(x) I.
xe[a,b] X'"

(5)

Finally we show that y = y* if and only if ex = t.
In doing this, we shall have a greatly simplifed method of finding the y*

minimizing (1) over that proposed in [6]. Our method of proof is quite
different from that used in [7].
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2. MAIN REsULTS

Ro(x) = y(x) -: XIX ,
X
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where y(x) is any fixed positive approximant and YI(X) is given by (2). Note
that RI(x) ~ 0 for all x, equality holding at z if and only if YI(Z) = ZIX. Using
(2), we see that (13 = ljrx)

R ( ) = (13 - 1)(Ro(x) + I)B - f3(Ro(x) + I)B-l + 1 (6)
I x f3(Ro(x) + I)B-l .

Letting

8(x) = In y(x) = In[l + Ro(x)],
XIX

we have

(13 - 1) eBB(",) + 1
RI(x) = f3e(B-I)BC",) - 1. (7)

Now let Xl < X2 < .. , < xm+2 be a set of characterizing extremal points for
y, the minimizing solution of (4), that is,

IY(Xi) - x/' I= max Iy(x) - XIX I
x/' xe[a,b] XIX

and

i = 1'00" m + 2.

Next, let r be a number satisfying

Set

Ro ( ) = ry(x) - XIX
y X x"'

(8)

(9)

(10)
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y (x) = ({3 - 1)[yji(x»)13 + x
1 {3[YY(X»)S-l

We claim that there exists a unique y* in the range (8), for which

Using the fact that

({3 - 1) eSt + 1
ep(t) = (3e(S-llt - 1

(11)

(12)

is nonnegative, vanishes at 0, strictly decreases for t < 0, and strictly increases
for t > 0, we obtain that RIy(Xl) is a continuous function of y(y > 0) which
takes on the value 0 when y = Xl"'/Y(X1) and increases strictly as y moves
away from the value x1"'/Y(X1). Likewise, RIy(x2) is a continuous function of
y(y > 0) which takes on the value 0 at x2"'/y(X2) and increases strictly as y
moves away from this value, implying the existence and uniqueness of y*.

Next, we observe that

i = 1,2,... , m + 1,

and

The first equality follows from

i = 1,... , m + 2.

x.'"
t

Y(Xi+2) - X~+2

X~+2
i = 1,... ,m

and (11). The second equality follows from the restriction (8) on y. Also, if
Z E [a, b), then

implying

or

where

S".{X) = In[1 + Ro".{x)]. (13)
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ep(oAz» ~ max {ep(Oy'(Xi»}'
,~I.2
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Thus, by the theory developed in [6], see (3), it follows that y*ji(x) is the
unique function minimizing (1).

Now suppose y > 0 is outside the interval (8). Then by a reasoning similar
to that used above, it can be shown that

Using this fact and equating R1".(X1) and R1".(X2), we find that

* _ [ Xl"X2 jill-l(Xl) - X1X2"jill-1(X2) ]"
y - (f3 - l)[ji(xl) ji(X2)]1l-1[X2"ji(X1) - X1"ji(X2)]

= [(1 + A)Il-1 - (1 - A)Il-l]d
2(f3 - 1)'\(1 - ,\2)11-1 '

where A = 1/ (ji(x) - x")/x" 1/.
Combining, we have

(14)

THEOREM l. Let ex E (0, 1), f3 = l/ex and 0 < a < b. Then there exists a
unique polynomial or rational approximant y*(x), minimizing

ep(y) = max IYn(x) - x" I,
xE[a,bj x"

where

.(x) = (fJ - 1) yLl(X) + x
Yk f3y~=~(x)'

Yo(x) = y(x),

k = 1,2,... , n,

and where y(x) varies over the class of approximants. Moreover,
y*(x) = y*ji(x), where ji(x) is the unique approximant minimizing

max Iy(x) - x" I
xE[a,bj x'"

and y* is given by (14).
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By the same methods, we prove

THEOREM 2. Let (X E (0, 1) and 0 < a < b. Then there is a unique poly­
nomialor rational approximant y(x), minimizing

@(y) = max lIn y(x) I
xE[a,bj x'"

as y(x) varies over the positive approximants. We have

y(x) = yy(x),

where

(15)

(16)

(17)

and .\,y(x), Xl and X 2 are as described above. Furthermore, y = y* ifand only if
~ - 1.
~ - 2'

Proofof Theorem 2: In proving this Theorem, we shall not use the general
fact that the best logarithmic approximation to a given positive function
f E C[a, b] is (1 - .\2)-1/2 times the best relative approximation tof, where .\ is
the relative error. Instead, we note that the existence and uniqueness of y,
minimizing (15), follow by the usual arguments. (16) and (17) follow by
exactly the same methods used to prove Theorem 1. As to the last statement
of Theorem 2, we note that equality, when (X = l, was shown in [7]. To show
that equality cannot occur otherwise, we simply must show that if ep [of (12)]
satisfies

ep(t) = ep(-t),

for some t > 0, then f1 = 2. The equality (18) may be simplified to

(f1 - 1) sinh t - sinh(f1- l)t = 0,

(18)

for which we wish to show that fl = 2 is the only solution larger than 1.
Looking at

if;(f1) = (f1 - 1) sinh t - sinh(fl - l)t,

we see that if;(I) = if;(2) = 0 and

if;"(f1) = -/2 sinh(fl- 1)/.

Since if;"(fl) < 0, for fl > 1, we have by Rolle's Theorem, that if; vanishes at
1 and 2, and nowhere else in [1, (0).
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SUMMARY
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This work greatly simplifies finding the optimal starting function y*,
minimizing (1). To date, the method of calculating y* had consisted of a
modified Remes algorithm in which one had to solve a nonlinear system of
equations by means of Newton's method of higher order. Using the above
results, we can calculate y*(x) by calculating the best relative approximation
.y to x'" and multiplying by a constant depending upon the relative error '\.

Added in proof This problem has also been solved by D. L. Phillips. See D. L. Phillips,
Generalized logarithmic error and Newton's method for the moth root, Math. Comp.•
24 (1970).
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